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Abstract-The present paper examines the elastostatic problem related to the axisymmetric inden
tation of the single surface of a penny-shaped crack by a rigid disc anchor. The governing integral
equation is solved in a numerical fashion to evaluate the axial stiffness characteristics of the indenting
disc anchor and the stress intensity factors at the tip of the penny-shaped crack.

INTRODUCTION

The theory of a disc-shaped anchoring element or foundation has been studied quite
extensively in the context of the modelling of anchoring devices, in situ plate load tests and
deep foundations embedded in geological media [see, for example, Selvadurai (1976),
(1979), (1980), (1984), (1993); Rowe and Booker (1979); Selvadurai and Nicholas (1979);
Selvadurai and Au (1986); Rowe and Davis (1982); Selvadurai et al. (1990)]. In particular,
the class of solutions based on the classical theory of elasticity have found extensive
applications in the modelling of anchor behaviour related to geomaterials such as soft
rocks, overconsolidated clays, etc. While the conventional elastostatic studies in this area
have focused on isolated disc anchors with perfect interface bonding, the subject matter
has been extended to include the influence of debonding (Hunter and Gamblen, 1974;
Keer, 1975) and crack development (Selvadurai, 1989) at the boundaries of the circular
anchor. The paper by Selvadurai (1989) considered the problem of the axial loading
behaviour of a rigid circular anchor plate which was embedded in bonded contact with the
surfaces of a penny-shaped crack. The development of such cracks was attributed to the
use of expansive cementaceous grout material which are used to create the injection anchor
regions in soft rock masses. Similar crack development is feasible either during the pen
etration of single helix ground anchors or during a plate loading test conducted at the base
of a borehole. The modelling of the boundary fracture problem examined by Selvadurai
(1989) focused on the idealized problem where, although boundary fracture was initiated
at the perimeter of the circular anchor, the plane faces of the anchor remained bonded
to the geological medium. This elastostatic model was intended to serve as a suitable
approximation for either deeply embedded anchors with open boundary cracks where
influence of self-weight of the geological medium would ensure bonded contact at both
interfaces even during application of the anchor loads or for situations where high interface
strength would ensure bonding at both plane faces of the anchor. In this study the more
realistic situation is examined where the anchor plate experiences debonding at one of the
plane faces, due to the application of the axial anchor load P (Fig. 1). Attention is therefore
focused on the axisymmetric smooth indentation of the single surface of a penny-shaped
crack by a rigid circular anchor plate. The assumption of smooth contact at the anchor
plate-{:lastic medium interface is an idealization since in practice, such interfaces could
exhibit a variety of contact conditions ranging from complete bonding to smooth contact
with Coulomb friction or finite friction occupying an intermediate position. For the purposes
of this paper a smooth contact is assumed with the understanding that the compliance of
the anchor plate is at its greatest when the interface bonding condition is relaxed. The
mathematical analysis of the elastostatic anchor problem utilizes a Hankel transform
approach which yields a system of three coupled integral equations. These in turn are

1279



1280 A. P. S. SELVADURAI

p

Anchor Rod

Grouted Anchor
Region

Debonded Boundary

Fig. I. Partially bonded plate anchor embedded in a penny-shaped crack.

reduced to a single Fredholm integral equation of the second kind which is solved in a
numerical fashion to generate results ofengineering interest. These include the axial stiffness
of the anchor plate and stress intensity factors at the boundary of the circular crack.

FUNDAMENTAL EQUATIONS

The problem examined is shown in Fig. 2. A rigid circular plate anchor of radius a is
axisymmetrically located in a penny-shaped crack of radius b. The application of an
axisymmetric load P induces a rigid displacement A within the smooth indentation region.
Since the anchor problem exhibits a state of axial symmetry, it is convenient to employ the
strain potential solution representation for elastostatic problems given by Love (1927). It
can be shown that the solution to the displacement equations ofequilibrium can be expressed
in terms of a single function <p(r, z) which satisfies the equation
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Rigid Circular
Anchor

--- b --_.~ a ~
Debonded
Face of Crack

Region 2

Isotropic Elastic
Medium (G.v)

Fig. 2. The detached plate anchor problem.



where
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(1)

(2)

is the axisymmetric form of Laplace's operator in cylindrical polar coordinates. In order
to derive the integral equations governing the disc anchor problem we seek solutions of
eqn (1) which are based on Hankel transform developments of the governing equation
(Sneddon, 1977) and applicable to the regions 1 (0 ~ z < 00) and 2 ( - 00 < z ~ 0) which
are defined in Fig. 2, i.e.

qJ(l)(r,z) = f' [A(O+B(Oz] e-\zJo(Cr) dC

qJ(2)(r,z) =100

[C(C)+D(Oz] e\zJo(Cr) dC,

(3)

(4)

where A (0 ... D(O are arbitrary functions which should be determined by satisfying the
mixed boundary conditions at the faces of the cracked region and continuity conditions at
the intact region exterior to the crack occupying the plane z = O. The superscripts (1) and
(2) refer to halfspace regions 1 and 2, respectively. The relevant displacement and stress
components applicable to the regions 1 and 2 can be obtained from the expressions

where (X = 1,2.

02 (a)

2G uta) - 2(I-v )V2m(a) - -qJ-
a Z - a 't' OZ2

(5)

(6)

(7)

(8)

THE DETACHED ANCHOR PLATE PROBLEM

We consider the detached anchor plate problem where a rigid circular anchor plate
indents a single surface of a penny-shaped crack. The interface between the anchor plate
and the surface of the crack is assumed to be smooth. The detached surface of the crack is
assumed to be traction free. The problem is considered to be axisymmetric where an axial
load P acting on the anchor plate induces a rigid displacement .:1. The mixed boundary
conditions applicable to both surfaces of the crack are as follows:

u~ 1)(r, 0) = .:1, O~r~a (9)

O'~p(r, 0) = 0, a<r<b (10)

O'~p(r, 0) = 0, O<r<b (11)

O'~;)(r,O) = 0, O<r<b (12)

O'~;)(r, 0) = 0, 0< r < b. (13)

SAS 31:9-G
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The continuity conditions applicable to the exterior region containing the penny-shaped
crack are given by

u~ I) (r, 0) = U~2) (r, 0), b~r<oo (14)

u~l)(r,O) = u~2)(r,0), b~r< 00 (15)

lT~~) (r, 0) = lT~;) (r, 0), b<r<oo (16)

lT~;>(r, 0) = lT~;)(r, 0), b < r < 00. (17)

Considering the boundary conditions and continuity conditions (9)-(17) it can be shown
that

H o[(-1{N(O+'(1-2v)B(O} ;r] = -2GA; 0 ~ r ~ a (18)

Ho[N(O ;r] = 0, a < r < b (19)

H1[{N(O-,B(O};r] =0, O<r<b (20)

Ho[P(O;r] =0, O<r<b (21)

HJ[Q(O;r] =0, O<r<b (22)

H o[(-1{N(O+'(1-2v)B(O+2(I-v)P(O+(1-2v)Q(o} ;r] = 0, b ~ r < 00 (23)

H 1[,-1{(1-2v)P(O+2(I-v)Q(O+N(O-2(l-v),B(O};r] =0, b<r< 00 (24)

Ho[{P(O-N(O};r] =0, b<r<oo (25)

H1[{Q(O-N(O+,B(O} ;r] = 0, b < r < 00, (26)

where

,[,A(0 +(1- 2v)B(0] = N(O

WI-2v)D(O-'C(O] = P(O

n'C(O+2vD(O] = Q(O

and Hn[Q(O; r] is the Hankel transform of order n defined by

Hn[Q(O ; r] = 100

'Q(OJn('r) d'.
Considering (20) we can show that

where g(r) is an unknown function defined in re (b, (0). Also from (26) we have

H1[Q(O ;r] = g(r), b < r < 00.

Considering (22) and (32) we have

Q(O = 100

rg(r)J1('r) dr = N(O-'B(O.

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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The eqns (18), (23) and (24) can be written as
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-I fiG (1-2v) -I 34)
Ho[( N(O;r]=-(1_v)+(2_2v)Ho[( Q(O;r]=G1(r), O<r<o (

HO[(-1 N(O; r] = - HO[(-I P(O; r] = G2(r), b < r < 00 (35)

- 1 4(1- v) - 1 - I 3 )
H 1[( N«();r]=(1_2v)H 1[( Q(O;r]+HI [( P(O;r], b<r<oo. (6

We now assume that N«() admits a representation

Sfl (r), 0 < r < a
Ho[N«(); r] = 1I2(r), b < r < 00.

Alternatively from the Hankel inversion theorem we have

(37)

(38)

Following Selvadurai and Singh (1985), the solution of the system of triple integral equa
tions (19), (34) and (35) can be written as

O<r<a

b < r < 00,

(39)

(40)

where

Using the results

(41)

(42)

(43)

(44)

(45)

the results (41) and (42) can be written as

fiG (1-2v) (00
gl(r)=-(l_v)+ (2-v)Jo Q(Ocos«(r)d(, O<r<a (46)
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g2(r) = - f' pm sin ('r) d', b < r < 00. (47)

Also, from (31) we have

N(,) = ,Bm +f" ug(u)JI('u) duo

From (36) and (48) and the condition

1
00

2ru100

dw
J1«r)JI('u)d'=- 2[( 2 2)( 2 2)]1/2o 11: max (r.u) W W -r w-u

it can be shown that

(48)

(49)

where

i'" U2g(U) du
8(w) = (2 2) 1/2' b < W < 00.

b W-U

The eqns (43), (44) and (51) are of the Abel-type; consequently we have

-2 d1a
sFI(s) cis

II (r) = - d- (2 2) 1/2' 0 < r < a
1I:r r r S - r

2 d iU
w8(w) dw

g(u) = -2 -d (2 2) 1/2' b < u < 00.
1I:U U b U-W

Substituting the value of II (r) and 12(r) given by (52) and (53) in (38) we have

(51)

(52)

(53)

(54)

(55)

Making use of the inversion theorem we obtain from (21), (25) and (55) an integral
expression for P(,) in terms of F 2(s), i.e.

2ioo

P(,) = - F 2(s) sin ('s) ds.
11: b

(56)

Substituting the value of Qm defined by (33) and the above value of P(,) in eqns (46) and
(47) we have
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-~G (1-2v)100

gl(r) = (I-v) + (2-2v) b g(u) du, 0 < r < a

g2(r) = -F2(r), b < r < 00.

Hence, from (39) and (40) we obtain a set of triple integral equations of the form

1285

(57)

(58)

(59)

(60)

where

(1-2v) ra

T 3(r) = 4(1- v) Jo T 1(s) ds, b < r < 00, (61)

(62)

and E is Young's modulus of the medium. The system of triple integral eqns (59)-(61) is
equivalent to a single integral equation of the form

where

\
b-rl Ib-slK1(r,s) = rIn b+r -sIn b+s .

0< r < a, (63)

(64)

The problem of the axisymmetric loading of a detached anchor plate embedded in a penny
shaped crack is reduced to the solution of the single integral equation (63). This integral
equation is not amenable to solution in an exact closed form. Consequently, numerical
techniques will be utilized to generate results of engineering interest.

LOAD-DISPLACEMENT RELATIONSHIP FOR THE ANCHOR

A result of particular interest to engineering applications concerns the load (P) vs
displacement (~) relationship for the smoothly embedded anchor. Considering the integral
expression for the contact stress between the anchor and the elastic medium we have

Using the expression (38) for N({) in the above equation we have

(I) 2
U zz (r,O) = -F\(r), 0 < r < a.

1tr

(65)

(66)

The load-displacement relationship for the anchor plate can be evaluated by considering
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the equilibrium equation for the indenting plate. Assuming that the anchor displacement
occurs in the direction of the applied force we have

P = 2nf rc1~~)(r, 0) dr (67)

or

P fE/1 = 4 0 T1(r) dr. (68)

STRESS INTENSITY FACTORS AT THE BOUNDARY OF THE CRACK

The state of stress in the intact region beyond the penny-shaped crack is such that both
O"~P ( = O"~;» and O"~;> ( = O"~;» are nonzero for z = 0; r > b. Consequently both crack opening
mode and crack shearing mode stress intensity factors are present at the crack tip. The
evaluation of these stress intensity factors is important to the assessment of loads that can
initiate extension of the crack tip at the attainment of some mixed mode fracture criterion.

The integral expressions for O"zz(r,O) and O"rz(r,O) in the region b < r < 00 are given
respectively by

and

2 d ir
wS(w) dw

O"rz(r,O) = -2 -d ( 2 2) 1/2 .nr r b r -w

The stress intensity factors Kf and Kfl at the tip of the crack are defined by

and

By making use of the results (69)-(72) it can be shown that

b 2 F2(b)
K 1 =---

ny'b
b 2 S(b)

K ll = ~ b 3/ 2 •

(69)

(70)

(71)

(72)

(73)

(74)

Alternatively, the stress intensity factors can be expressed in the integral forms in terms of
T 1(s) as follows:

(75)

and
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Kfl (1-2v) ra

Eli = 27[(1- v)b 3/ 2 Jo T[ (s) ds.

1287

(76)

NUMERICAL RESULTS

In order to derive results for the load-displacement behaviour of the rigid anchor plate
and for the stress intensity factors at the crack tip it is necessary to obtain a solution to the
governing Fredholm integral equation defined by (63). To develop a numerical solution for
the integral equation we adopt the general procedures outlined by Baker (1977), Delves
and Mohamed (1985) and Selvadurai et al. (1990, 1991). The Fredholm integral equation,
in the interval 0 < , < a is divided into N segments with 'i (i = 1 to N + 1) such that
'i = (i-l)h and h = a/No The equivalent matrix representation of (63) can be written as

(77)

with i,j = 1 to N; Hi = -1/2(l-v2
) and the coefficients Aij are given by

if i #- j

(78)

if i = j.

Upon solution of the matrix equation (77), the required results for the load-displacement
response (68), the stress intensity factors (75) and (76) can be obtained by using the
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Fig. 3. Variation of the axial stiffness of the anchor plate with the extent of cracking.
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discretized solution for T j (r). The solution converges very quickly and a discretization of
N = 10 is sufficient to obtain results which compare favourably (to within an error of 1%)
with certain known exact solutions for limiting cases.

It is also of interest to assess the relevance and accuracy of the numerical results by
examining the results for certain limiting solutions for the problem posed in the paper.

1. In the limiting case when (b/a) -+ 00, the continuity constraints imposed by the
uncracked region between the two halfspace regions will have no influence on the load
displacement response of the anchor plate. In this case, the load-displacement relationship
for the anchor plate is given by Boussinesq's result [see, for example, Gladwell (1980)] for
the smooth indentation of a halfspace region by a rigid circular indentor, i.e.

(79)

2. In the limiting case when (b/a) -+ 1, the problem reduces to that of the smooth
indentation of a penny-shaped crack of radius a by a rigid plate of equal radius. It is
possible to examine the limiting case in the light of the result given by Keer (1975) and
Selvadurai (1994) to the problem of a rigid disc inclusion which is embedded in bonded
contact with a penny-shaped inclusion of equal radius. Keer's result (1975) for the load
displacement relationship for this problem is given by the exact closed form solution

0.6
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Kr /b 0.3

Ell.

0.1

o
o 0.2 0.4 0.6 0.8 1.0

.JL
b

Fig. 4. Variation of the crack opening mode stress intensity factor at the boundary of the cracked
region.
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P 2n [ {In (3-4V)}2]
E!:ia = (l +v)(3-4v) 1+ n 2 •

1289

(80)

In the particular case when v = 1/2, the solution to the case of the fully bonded rigid plate
coincides with the result for the case when the interface is smooth.

Figure 3 illustrates the results for the normalized value of the axial stiffness of the
partially indenting anchor plate PIP·, where p. = 2E!:ial(l-v2

). In the special case when
v = 1/2, the result for PIP· derived from the solution of the integral equation (63) agrees
with the exact closed-form solution (80) given by Keer (1975). Also as (alb) -+ 0, the result
derived from the solution of the integral equation agrees with Boussinesq's result. These
numerical results also indicate that both Poisson's ratio and the anchor plate-crack aspect
ratio has a significant influence on the axial stiffness of the anchor plate. Figure 4 illustrates
the influence of Poisson's ratio and alb on the flaw opening mode stress intensity factor at
the crack tip. As is evident the stress intensity factor reduces to zero when the crack tip is
remote from the anchor plate. The maximum value of K) occurs when alb -+ 1. Analogous
results for the crack shearing mode stress intensity factor are shown in Fig. 5. These results
indicate that, in general, KnIK. « 1 and that when alb -+ 1, KnIK) has a maximum value
of approximately 0.3, for v = O. When v = 1/2. the crack shearing mode stress intensity
factor is identically equal to zero. The major mode of the extension of the crack is expected
to be self similar with extension taking place at the attainment of a critical value of the
crack opening mode stress intensity factor.
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Fig. 5. Variation of the crack shearing mode stress intensity factor at the boundary of the cracked
region.
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CONCLUSIONS

The elastostatic problem related to the smooth indentation of the single surface of a
penny-shaped crack by an embedded rigid circular anchor plate is examined. The analysis
of the indentation problem can be reduced to the solution of a single Fredholm integral
equation of the second kind. This equation can be solved via a numerical technique to
develop results of engineering interest. The accuracy of the numerical procedure is verified
by appealing to exact solutions available in the literature. Numerical results presented in
the paper illustrates the manner in which the axial stiffness of the anchor plate and the
stress intensity factors at the crack tip are influenced by Poisson's ratio of the elastic
medium and the crack-anchor plate aspect ratio. The effect of debonding at one sur
face of the plate anchor has a considerable influence on the elastic compliance of
the plate anchor. A comparison with results given in Selvadurai (1989) indicates that
[P/16GAa]comp'etebonding/[p/16GAa]partialbonding can vary for example, from 2 (a/b=O; v=
0.5) to 1.39 (a/b = I ; v = 0). It is likely that even for deeply embedded anchor plates
the local compliance can induce detachment of the anchor plate which can result in the
attainment of a higher compliance. This aspect of deeply embedded anchor plates merits
further study. Also, it is observed that the crack opening mode stress intensity factor is con
siderably larger than the crack shearing mode stress intensity factor for all choices of
vE (0, 0.5) and a/bE (0, I). Consequently, the extension of the crack due to anchor plate
loading is likely to be dominated by the crack opening in the plane of the disc anchor.
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